The reflow soldering oven is used for attaching electric components to their contact pad, usually printed circuit boards (PCB) through a reflow process. A mixture of powdered solder and flux (usually sticky) is first used to loosely fix the electrical components on to the PCB which is then subjected to a controlled heat, melting the solder in the process resulting permanent joints.
The heat in the majority of these ovens is produced from ceramic infrared heaters, and then directed to assembly chambers through radiation process. The infrared ones uses fans to force heat into the assembly chambers where the PCB and the components are exposed to optimal temperatures for melting of the solder for permanent fixing of the components on to the PCB.
In a conventional reflow soldering oven, there are four phases or zone with a unique thermal profile for each. It all starts in the preheat zone where the time/temperature relationship (ramp-rate) is determined. This is the rate at which the temperature changes on the PCB and it is important so that the PCB does not crack or components do not get destroyed. The solvent in the paste starts to evaporate at this phase.
Thermal soak zone with temperature ranging from 60 to 120 is the next stage for the circuit board. The purpose is the removal of solder paste volatiles and flux activation (oxide reduction from leads and pads). Temperature control at this phase is also very essential. Too high temperature leads to damage to the PCB and the components while too low temperature leads for failure of full oxidation of flux.
The reflow zone is the third place where the temperatures reaches maximum peak, usually above the liquidus point. The soldering paste is molten under efficiently controlled conditions reducing the surface tension of flux at the point of metal juncture. The result of this process is the permanent fixing of electrical components on to the circuit board. The ramp rate and temperature control is highly significant at this phase. The sudden change of temperatures from the soak zone to above liquidus can easily destroy the devices through temperature shock and thus calls for very efficient control mechanisms.
Cooling takes place in the last phase also known as the cooling zone from where the molten solder solidifies into the precise target points permanently fixing the electronic components on to the PCB. The temperature control is still significant as such problems like thermal shock or the excessive metallic formation must be avoided I order to obtain a mechanically sound devices attached with fine grained structured solder.
In the modern ovens with the most up to date technology, there is usually no need for solder to flow more than once as these advances techniques guarantees that the granules in the paste can surpass the reflow temperature of the solder used. The trick is therefore to select an oven that can perform optimally at all the phases resulting into the best possible PCB with attached components.
The changing customer needs, competition, market condition and the general technology all calls for adopting measures that optimizes operating efficiency in terms of yield and profitability. It is such measures that can ensure the survival of a firm into the future. For assembly firms in particular, an efficient and modern reflow soldering oven is more than necessary as it increases the production rate and minimizes on power consumption.
The heat in the majority of these ovens is produced from ceramic infrared heaters, and then directed to assembly chambers through radiation process. The infrared ones uses fans to force heat into the assembly chambers where the PCB and the components are exposed to optimal temperatures for melting of the solder for permanent fixing of the components on to the PCB.
In a conventional reflow soldering oven, there are four phases or zone with a unique thermal profile for each. It all starts in the preheat zone where the time/temperature relationship (ramp-rate) is determined. This is the rate at which the temperature changes on the PCB and it is important so that the PCB does not crack or components do not get destroyed. The solvent in the paste starts to evaporate at this phase.
Thermal soak zone with temperature ranging from 60 to 120 is the next stage for the circuit board. The purpose is the removal of solder paste volatiles and flux activation (oxide reduction from leads and pads). Temperature control at this phase is also very essential. Too high temperature leads to damage to the PCB and the components while too low temperature leads for failure of full oxidation of flux.
The reflow zone is the third place where the temperatures reaches maximum peak, usually above the liquidus point. The soldering paste is molten under efficiently controlled conditions reducing the surface tension of flux at the point of metal juncture. The result of this process is the permanent fixing of electrical components on to the circuit board. The ramp rate and temperature control is highly significant at this phase. The sudden change of temperatures from the soak zone to above liquidus can easily destroy the devices through temperature shock and thus calls for very efficient control mechanisms.
Cooling takes place in the last phase also known as the cooling zone from where the molten solder solidifies into the precise target points permanently fixing the electronic components on to the PCB. The temperature control is still significant as such problems like thermal shock or the excessive metallic formation must be avoided I order to obtain a mechanically sound devices attached with fine grained structured solder.
In the modern ovens with the most up to date technology, there is usually no need for solder to flow more than once as these advances techniques guarantees that the granules in the paste can surpass the reflow temperature of the solder used. The trick is therefore to select an oven that can perform optimally at all the phases resulting into the best possible PCB with attached components.
The changing customer needs, competition, market condition and the general technology all calls for adopting measures that optimizes operating efficiency in terms of yield and profitability. It is such measures that can ensure the survival of a firm into the future. For assembly firms in particular, an efficient and modern reflow soldering oven is more than necessary as it increases the production rate and minimizes on power consumption.
About the Author:
You can visit the website www.sikama.com for more helpful information about Reflow Soldering Oven: Survival Of Assembly Plants
0 comments
Post a Comment